IAS algorithm

The Iterative Alternating Sequential (IAS) [Ref1] [Ref2] algorithm is based on an iterative scheme that alternatively updates the dipole moments Q by solving a linear least squares problem using a priorconditioned CGLS algorithm with sutable stopping condition and updating the hyperparameter theta by an explicit formula.

An example of application of IAS to a real dataset can be found in IAS Demo.

Download

git clone https://github.com/IAS-code/IAS-MEG.git
Ref1

D. Calvetti, A. Pascarella, F. Pitolli, E. Somersalo, B. Vantaggi A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning, Inverse Problems, 31 (12), 125005, (2015)

Ref2

D. Calvetti, A. Pascarella, F. Pitolli, E. Somersalo, B. Vantaggi, Brain Activity Mapping from MEG Data via a Hierarchical Bayesian Algorithm with Automatic Depth Weighting, Brain topography, 1-31, (2018)

Indices and tables